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NEW EFFECTIVE MASS IN ADIABATIC APPROACH FOR THE
MUONIC THREE-BODY PROBLEM

I.V.Puzynin, T.P.Puzynina, Yu.S.Smirnov, S.I.Vinitsky

The method for the construction of the adiabatic equation describing the
discrete and continuous spectra of the mesic molecule systems by means of the
generalization of the concept of the effective mass is presented.

The investigation has been performed at the Laboratory of Computing Tech-
niques and Automation, JINR.

Hosas sdbdextuBrag Macca B anmabarnueckoM MORAXOAC
JUIS1 MIOOHHOM 3a[aUM TpeX Te

N.B.ITy3wans, T.I1.MMy3puuna, 0.C.CMmupHos,
C.U.Buaunkui

IpenanoxeH METOR NOCTPOEHKS aANA0ATUUECKOTO yPaBHEHMS IS ONTMCAHMS
ANUCKPETHOTO U HENPEPHIBHOIO CIIEKTPOB MEIOMOJNEKYNSPHBIX CHUCTEM MyTEM
0606menns nonatTus 3dpdeKTMBHOM Macchl.

Pa6ota BbtnosnteHa B JIaGopaToprn BEIMMCIUTEABHOM TEXHMKM U ABTOMATH -
zauun OUSIN.

In this work we discuss our numerical experiments on calculating the
energy levels of mesic molecules and mesic atoms cross sections in the
framework of some adiabatic approaches. The performed analysis, first, has
to explain the known disagreements between adiabatic and variational
calculations of the energy levels of the weakly bound states of ddu and diu
molecules and, second, to give the basis for the construction of new effective
adiabatic equations describing adequately both discrete and continuous
spectra of mesic molecular systems. We called the above disagreement «the
white hole» in the history of ucF theory [1]. Let us remember this
disagreement. In 1984 we obtained the following values of the weakly bound
states energy in the three-body adiabatic representation

=& (dd/l) ~€n (d)
1.956+0.001 (eV) 0.656£0.001 (V).
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We uscd 884 states of the two centers problem, in particular , 52 states
of the discrete spectrum and 832 states of the continuous one. Our adia-
batic results have stimulated the direct variational calculations [2 ). How-
cver later in our variational calculations we obtained the more accurate
valucs
&, (ddu) —e,, (d)
1.97475 (eV) 0.6600 (eV).

In these calculations [3] we used about 2660 variational functions.
Since up to now we have «a monopoly» in adiabatic calculations of the
binding states of mesic molecules, we suggest the explanation of the
disagrcements mentioned above. We think that this will be useful for
the correct applications of adiabatic approaches in the muonic three-body
scattering problem and other problems.

The adiabatic representation [4] is based on thce expansion of the
Shrocdinger three-body wave function W(R,r) over a complete set of
two center problem solutions

W(R,7) = j‘, ®, (7, B) Ry, (R). (h
7 .

Using formally the Kantorovich method for reducing a partial
diffcrential cquation to a sct of ordinary ones we obtain the infinite
system of radial equations

—“2 +2ME — U (R)|x(R) = 5 U.(R ‘(R @
Here

JU + 1) = 2m?
R? ’

41)

U (R) = IME, (R) + % (R) +

AD oy _ ¢ 9 o 9
HZP (R) = G &, S5 ®,),

d

J _
U H, (R)+dR U(R) 2QU a'R

+ B (R).

We have proposed the boundary conditions of radial wave functions
for bound states and the scattering problem, which allows the same
treatment for both problems as a nonlincar functional equation. For
solving this cquation w¢ have constructed a new numerical method (2],
that is a generalization of the continuous Newton method.
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X Fig. 1. The radial wave functions 1 —
13 x4V for the open and 2 — x4!) for the

closed channels in the reaction of the
resonant scattering (U)y=y +d—~

- (),=y +d with orbital momentum
J=1

Our first adiabatic
calculations were performed in
the two level approximation. In
1975 first we obtained the qua-
sy-stationary state of the du
molecule with the total orbital momentum J =1 and M = 10.894 (in

this units of reduced mass m" = 202.024m ). For this mass we found

the energy
~e=E=068¢eV (E=E - E ()

and the width
I'=10.87 eV.

The radial wave functions x(ll)(R) for the open channel and

x(zl) (R) for the closed channel in the case of the clastic scattering

(), +d—=>), +d

arc displayed in fig.1.

] This result however was not
®3 \ ‘ published in ref.[S]. Now we
! have reproduced the transfor-
| mation of this state to the
\ weakly bound state when the

Fig. 2. The dependence of the energy E
(V) and width I (eV) of the dfu -mesic
‘ molecule (/ =1, v= 1) on the ellective
-2 mass M




Fig. 3. The radial wave functions | — X
2D and 2 — xb9) for the J =1 and 987

the zero collision energy =0 1
(U= +d > ()= +d 0.6 1

0.4 ]
effective mass M increases as ]
paramecter. 02 ]

Figurc 2 shows the depend- ] ?
ence of the energy E and the _ 1] N I et R R
width T on such a mass. For the S 20 40 60 80
mass value M = 11.01 we have —o.zi
the state with the zero energy ]
and the zero width. The radial _, j

functions of such case are
presented in fig.3. The function
1 of the open channel is decreasing slowly in comparison with the
function 2 of the closed channel. As the mass M increases, the diu
system is transferred to the bound state. For the value M = 11.12 eV
we have obtained the «symmetrical» value of the energy E = —0.68 eV.
Therefore we can expect that the weakly bound state J =1, v=1)
exists and the value of the binding energy is similar to this one if we
take into account all the non-adiabatic corrections to the energy level.
Indeed, our adiabatic and variational results are near to this value. We
have the function E = E(M) and we can find for the «exact» value
E = -0.66 eV the corresponding value of the effective mass M = 11.11.
The radial functions of this siate are presented in fig.4.

Thus we have reproduced the
variational energy level by X

choosing the effective mass M .
in the two level adiabatic appro-
ximation. :
We have performed the cal- 1
culations of the cross-section of ]
the reaction ] ) !
() +d=> () +d ]
-0.0 y Ty .25 ......... A .0 ......... A ,0 ........ !ZIO
Fig. 4. The radial wave functions 1 —
2D and 2 — x4Y)  of the bound state
=1, v=1) of the dfu-mesic mole- ]
cule ~0.4
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) - _— . .
0'11(107%cm?) Fig. 5. Partial elecastic scattering cross

80.0 sections of fu-atoms on deuterium nuclei
] =3

600 § using corresponding value of M.

tutd — tutd Our results of calculating partial

0o ] (01“) and total (o,,) eclastic

scattering cross sections of fu -
atoms on deuterium nuclci d
(sec figs.5,6) agree with other
multichannel calculations |[6]
and reproduce the known form
resonance for J =3 and

0.0 —rrrrm T YT T ERmasa) -+ .
0.001 0.01 o 1 10 E =121 eV. The radial wave
Energy(eV)

functions x(l'), x(zl) and x(lz),
x(22) corresponding to the reactions
()5 + d > (), + d

and
(du),, + 1> d + (),

are presented in figs.7—S8.
A natural generalization of effective mass as a variable parameter
appeared in the new effective

01 (10 Pcm?) two level approximation when
1200 5 we take into account non-adia-
batic corrections truly. We have
100.0 3 obtained them by means of a
] canonical operator transformati-
80.0 tutd - tutd on T =T(R, d/dR). This trans-
formation excludes nondiagonal
60.0 3 terms in the right-hand side of
, /\ the equation (2), including the
40.0 operator terms 2Q(R) d/dR.
Thus, the above transformation

200 —__,~//
08,00‘*‘ oot o1 1 46 | Fig. 6. Total eleastic scattering cross sec-

Energy(eV) tions of fr-atoms on deuterium nuclei
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Fig. 7. The radial wave functions 1.50
1 — gt and 2 — b for the
[ = 0 corresponding 10 the scattering 1.00
process (fue) +d with two open
channels at the collision energy

I RN SR

E = 0.3 eV (above the second thre- 0.50 1
shotd) ]
S ooo PTMAITHL LA LUIEA AT
] 2
-0.50 U h
W RARN
-1.56 1+t
0.0 50.0 100.0 150.0 200.0
r —_—
Fig. 8. The radial wave functions 150 7
1 — y{® and 2 — yi2) for the ]
{ = 0 corresponding to the scattering 1.00 ] 2

process (du) + ¢t with two open
channels at the same collision energy ]
E=03eV 50 . .

~1.00 1

Y —
0.0 50.0 100.0 150.0 200.0

is the gencralization of the known Best Adiabatic Approximation [7].
Finally we have obtained thc new system of equations

_ d? ~ d = ~
{dMp ‘(R);R—2 ~SMI20(R, My +V (R, )1 + P} x (R, D) = 0. (3)
Here p = 2Me is the matrix of channcl momenta,

O(R, M) = Q(R) + 2M) " 'AQ(R),

V(R, M) = V(R, M) + 2M)"'AV(R)
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Fig. 9. The behaviour of the matrix ele-
Q ments Q(R) relating to continuous spectrum

arc the new potentiais;

=0 pTIRy =1+ T A ()
is the new effective mass de-
pending on R and satisfying thc
] asymptotic condition
4)

R SMu~Y(R) - 1

if R - . Note, that 3M = M/M is the matrix of corrections between
the Jacobi M and thc adiabatic M masscs;

—1 -1
—tu ' (R) =4 3 Q(RIQ(RNE(R) — E(R)) )
j#i
arc diagonal corrections to unit. The relation (5) is valid only if the
sum is complete. Since in the calculations this sum has a finitc nunmber
of terms, the relation (4) is not valid exactly.
On the other hand we have the approximate relation

~ 0.973 ©

N —

pl=) =1~ @M

(21\4)-‘ =~ 0.05339 (exactly for ddu).

If we use only the finitc number of states of the continuous spectrum,
then we have the following valuc

(o) =1~ (2M)7'0.28 = 0.985. D

We explain this fact by the specific behaviour of the matrix elements
relating to the continuous spectrum. This behaviour is schematically

shown in fig.9.
Therefore if [ is fixed and R = o, the contribution of the continuous

spectrum is lost in formula (6) since it is a locally incomplete set.
As a result we have

L™ () — @ (o)) (o)t = 1%.
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Fig. 10. The cross section a?, (10719 cm?) 0%, (10" ®cm?)
for reaction ppu(F=0)+p->
>pu(F=0+ps=1/2

. . 0.1 3
The relative difference between

variational and adiabatic results
is also about 19 for both ddu
and dw weakly bound states. 0.001 -

The siAmplest variant of the
proposed approach consists in g, ,
using the relation (4) on whole

0.01 3

hdedddd R it Aokl TETTT BEY
4
4
4
3
4
3

interval 0 < R< oo, 0.00001 rrrrT——r e T T
Then we obtain a two level ap- o001 oe! o ' Ene,gy(‘gv)
proximation
(1'2 d 2 ¢y
{~——dR2 = 3M [2Q(R) g + V(R, M)1 + p"} x(R, p) + 0,

where dM is a variable parameter.

Note that we can find this parameter with a fit of the discrete spect-
rum and then use the equation (8) for the calculation of the cross sec-
tions of mesic atoms.

We have considered the more complicated case for using the new
effective mass. We have calculated the cross section of the scattering
process

pu(ti)y+p=>pu (1) +p

and obtained the true treshold 1.0 3
behaviour as on fig.10. For this 1 e '(R)
example in fig.11, 12 we de- 4 | ~

monstrate also the correspon- ]
ding behaviour of the new effec- 3
tive mass and the potential from ©-98 3
the eq.(3). ]

We intend now to solve the o.s7
inverse spectral problem in two- :
level adiabatic approximation

0.96 3
Fig. 11. The effective mass #~! (R) of the 0,95 Ity Prmrrfr
0.00 5.00 10.00 15.00

mesic molecul ppie for J =0



Fig. 12. The effective V and adiabatic V

1.00
;VHO" 30;er(1)tials of the mesic molecule ppu,
0.00
~1.00 R
Y 1 V1I
1 for the investigation of the new
e T 380 Thooo | hsgo effective masses of muonic
R systems.
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